
STANDARDIZING YOUR
DEVELOPMENT WORKFLOW
FOR DRUPAL 8 AND BEYOND

CONTENTS
SECTION 1:
The Common Path

SECTION 2:
Problems with the Common Path

SECTION 3:
There Is a Better Way

SECTION 4:
Additional Tools to Help Optimize
Your Development Workflow

SECTION 5:
Bring Your Development Workflow to the Next Level

3

When it comes to Drupal development workflows, too many
organizations lack a standard, established process that can be
easily adopted and implemented. Development workflows tend
to evolve organically, and sometimes erratically. Their specific
structure — or lack thereof — is frequently influenced by starting
conditions (people tend to follow whatever process was in
place when they got there, regardless of how it originated),
business decisions that happen outside the development
process, and inherent biases of leadership, not to mention
mergers and acquisitions.

While the workflow your organization currently uses may
“work” most of the time, the haphazard nature of workflow
processes can lead to real problems, from a chaotic,
“wild west” approach to code submission and review, to
the inability to determine where things have broken and
why, when things inevitably break.

In this e-book, we’ll describe, at a high level, the most common
development workflow process that’s currently being used in
countless organizations and development shops today. We will
then recommend a superior, standardized approach that teams
can implement to drive better results as well as higher morale.

INTRO SECTION 1 SECTION 2 SECTION 3 SECTION 4 SECTION 5

https://www.acquia.com/

SECTION 1
The Common Path

5

Here is how code typically goes from being a ticket in a system
such as Jira all the way to being a feature that is available on the
production website.

The Common Path

1. Pulling a ticket and submitting
a pull request
Each developer works on their own local computer and
is responsible for maintaining their local development
environment or AMP stack.

All of the developers are working on the same codebase
and developing the same websites, and they’re using Git
to move their code between their computers. Since every
developer is responsible for their local environment—all
of their tools, applications and configurations outside
of Drupal—everyone on your team may be running
completely different configurations and setups.

Next, the developer pulls a ticket from the project
management system and does whatever the ticket asks.
The developer then begins a GitFlow workflow process
and pushes their work up to a hosted Git service (such as
GitHub or GitLab). Then, the developer submits a
pull request.

2. Confirming and approving the pull request
Another developer will see there’s a new ticket in code
review. This developer goes into GitHub, sees the pull
request, reads the code, and makes sure it meets the
stated requirements of the original ticket. In this process,
the second developer should download the code to
their own machine or another environment in order to
confirm that it actually works.

Once confirmed, this developer either approves the pull
request and moves it along to the next stage, or finds an
issue with it, sends it back, and the process starts all
over again.

INTRO SECTION 1 SECTION 2 SECTION 3 SECTION 4 SECTION 5

https://www.acquia.com/

6

3. Merging pull requests into primary
branches of code
Pull requests get merged into the primary branches of
code during the course of the sprint (or whatever project
management methodology you are using). It might be
the develop branch, the master branch or something
else entirely. Whatever its next stop may be, code
needs to be merged into a branch that will be worked
on by developers, assessed by user acceptance testing
or deployed into production (GitFlow facilitates this
branching model).

Before deploying into the hosting environment, you
need to back up databases (a process that may be
automated with custom scripts), perform final QA and
testing, follow launch checklist best practices and so on.

4. Deploying into the host environment
After being merged, the code now needs to be
deployed to the hosting environment. Whether this
environment is Acquia, AWS, a dramble of Raspberry Pis
or something homegrown, someone will need to push
the code manually into that server environment and
then manually deploy it. If you are using best practices,
you will deploy using a specific Git tag.

Now that deployment is complete, you will probably
use some configuration management strategy to
import configurations. You might also run some Drush
commands to clean up your environment after a
code deploy.

Whether this environment is Acquia,
AWS, a dramble of Raspberry Pis or
something homegrown, someone
will need to push the code manually
into that server environment and
then manually deploy it.

INTRO SECTION 1 SECTION 2 SECTION 3 SECTION 4 SECTION 5

https://www.acquia.com/
https://www.pidramble.com/

SECTION 2
Problems with the
Common Path

8

Even though the workflow outlined above is used by countless
developers and development teams, it has some inherent
problems that create suboptimal conditions and outcomes.

Problems with the
Common Path

1. Manual processes
Manual processes always bring with them the potential
for human error, whether this comes in the form of
someone forgetting to do something, someone making
a mistake while they’re doing something or everyone
doing the same thing in different ways, introducing
untraceable variations into your process.

INTRO SECTION 1 SECTION 2 SECTION 3 SECTION 4 SECTION 5

https://www.acquia.com/

9

2. No continuous integration (CI)
or continuous delivery (CD)
Continuous integration ensures consistency of testing,
primarily via automation. Developers have multiple
testing frameworks at their disposal. Indeed, there are
testing frameworks built right into Drupal core. There
are also behavioral testing frameworks, such as Behat,
which is built into Acquia’s Build and Launch Tool BLT
and allows you to write your ticket requirements as
tests. Since the test is written as part of the ticket, in the
course of deploying your code, developers can confirm
that the code actually works.

Continuous delivery ensures that your package
compiles consistently and without any errors across
all of your platforms. It also ensures that your code
is going to automatically deploy into the appropriate
environments every time the build succeeds. This
reduces the amount of manual review to be done and
completely eliminates the manual push of your code to
Acquia Cloud (or wherever it is going).

Continuous delivery reduces breaking overall, as well as
makes things more secure. Indeed, it’s a system that is
not kind to breaking, and will let you know very quickly if
anything went wrong. One benefit of this is that it ensures
your developers only do code reviews when the code is
ready. Finally, it also ensures that, when things are merged
together, conflicts aren’t created that then break
your systems.

INTRO SECTION 1 SECTION 2 SECTION 3 SECTION 4 SECTION 5

Developers have multiple
testing frameworks at their
disposal. Indeed, there are
testing frameworks built
right into Drupal core.

https://www.acquia.com/

SECTION 3
There Is a Better Way

11

Fortunately, there are a number of best practices that,
taken together, represent a more efficient and consistent
development workflow. Here’s what that looks like.

There Is a Better Way

1. Create a standardized workflow
You have to actually think about and standardize your
workflow. If you just cobble something together without
planning or doing your due diligence, it will show in your
results. Luckily, if you’re using GitFlow, you’re already on
the right track.

Although we will recommend a host of standard practices here, we are not
trying to be overly prescriptive. Some details will necessarily change based
on the composition of your organization. This means that, after reading
through this, you need to ask yourself, “What’s going to work best for me?”

INTRO SECTION 1 SECTION 2 SECTION 3 SECTION 4 SECTION 5

https://www.acquia.com/

12

2. Have project management in place
You need to understand and acknowledge that project
management truly matters before you start writing
code. Accurately defining requirements and technical
implementations and grooming your backlog to set up
reasonable expectations for each sprint will mean the
difference between success and frustration—if not
outright failure.

It is also important to have an agile development
process in place, rather than a traditional Waterfall
process. Waterfall is a linear/sequential model where
each phase must be completed before the next
phase can begin, with no overlapping in the phases.
But Waterfall was designed in a world with far less
unpredictability, and it lacks the flexibility and agility
required for modern workflow development.

Agile development methodology is based on iterative and
dynamic development, allowing teams to be flexible and
more responsive to customer requirements. Development
is done in small iterations, usually bi-weekly sprints where
use cases are created, developed and tested. At the end
of each of these sprints, there is a deployable product
available. You can also incorporate changes dynamically
on the go and deliver the same at the next sprint drop.
This cannot happen in Waterfall until the initial design
and changes are fully implemented and deployed.
Different agile development processes include Scrum,
XP, and Kanban.

INTRO SECTION 1 SECTION 2 SECTION 3 SECTION 4 SECTION 5

Agile development methodology
is based on iterative and dynamic
development, allowing teams to
be flexible and more responsive
to customer requirements.

https://www.acquia.com/
https://dev.acquia.com/blog/agile-software-development-cracking-code

13

3. Standardize the local
development environment
It is imperative that you standardize across all systems
involved in the development process; tools, machines,
your continuous integration service, as well as all of
your servers must be standardized. Local development
environments must have configuration parity with
production environments.

You also need to make sure that all of your
environments are running the same version of PHP, the
same version of Linux, all the same patches and so on.
Configuration must be identical across all environments
before you even get to the Drupal layer, so you can
be sure that everything will work when you deploy it.
(Resource management may differ, depending on
the circumstances.)

Other considerations
You might consider Git commit message enforcement. It may also be prudent to
have code sniffing on every single commit to ensure code quality before your code
gets into a system somewhere.

INTRO SECTION 1 SECTION 2 SECTION 3 SECTION 4 SECTION 5

https://www.acquia.com/

14

4. Use Composer
Previously, developers were responsible for maintaining
all their local tools – their own version of Drush, their own
version of NPM, their own version of PHP, etc. But this is
no longer necessary. Composer can do this for you.

Security

Because Composer lets you create explicit development
requirements for your projects, you can include code
that will only ever be shipped on local development
environments. As a result, when your CI/CD service
runs builds to deploy code into your production
environments, it will not include anything
that is marked “required development.” This means that
you don’t ship any development-specific tools with your
code and everything stays secure.

Continuous Integration

Essentially, Composer makes it possible for you to create
a second repository for code free of any development
requirements. So, how do you balance two different
repositories of code, one running Composer install
containing all these development requirements,
onerunning Composer install without them?

The only way to do this is to create two completely distinct
code repositories, and have an automated process in
place to manage the migration between them. This is
where continuous integration comes in. Not only will it be
responsible for running multiple tests on your codebase
every single time you submit pull requests, but it will also
be responsible for running the scripts that you ship with
your codebase in order to create a production artifact that
will eventually be deployed.

Remember, you are not just deploying the Git repo that all
of the developers have on their computers. Instead, you are
deploying a modified repo that is specifically designed for
running in a production environment. And that is a radical
change to the development workflow. Until now, no one
has solved this problem of managing these two separate
code repositories. There are homegrown solutions that try
to do this, but they bring with them all the usual problems
and headaches that come with homegrown solutions (no
documentation, no standards, reliance on tribal knowledge
to maintain, etc.)

INTRO SECTION 1 SECTION 2 SECTION 3 SECTION 4 SECTION 5

Previously, developers were
responsible for maintaining
all their local tools – their
own version of Drush, their
own version of NPM, their
own version of PHP, etc. But
this is no longer necessary.
Composer can do this for you.

https://www.acquia.com/

15

5. Use continuous integration and
continuous delivery
One great thing about continuous integration is that it’s
highly configurable. It can be used to automate testing
of your entire application and run all of your predefined
tests. At the same time, continuous delivery can be
used to automate the deployment process to push
code into another environment. (Of course, it will not
automatically deploy code in your environments – we
have mechanisms in place to prevent that. So, you do
need a manual process here. Still, at the end of the day,
continuous delivery effectively gets code into the
right environment.)

INTRO SECTION 1 SECTION 2 SECTION 3 SECTION 4 SECTION 5

https://www.acquia.com/

SECTION 4
Additional Tools to
Help Optimize Your
Development Workflow

17

There are a number of other tools available that can help
standardize and secure your development workflow:

Cloud Hooks
Cloud Hooks are scripts in your code repository that Acquia
Cloud executes on your behalf when a triggering action occurs.
While the Acquia Cloud user interface automates the most
common tasks involved in developing a Drupal application,
Cloud Hooks can automate additional tasks, including:

Performing Drupal database updates each time
you develop new code.

Scrubbing your production database each time
you copy the database to development or staging
by removing customer emails or disabling
production-only modules.

Running your test suite or an application performance
test each time you deploy new code.

Cloud API
Cloud API is available to all Acquia Cloud customers. Acquia
offers public APIs for many of its products to enable developers
to build powerful tools, automate repetitive tasks and create
custom development and testing workflows for websites. The
Acquia Cloud API allows developers to extend, enhance and
customize Acquia Cloud, and we introduce and expand our
APIs regularly.

Additional Tools to Help Optimize
Your Development Workflow

INTRO SECTION 1 SECTION 2 SECTION 3 SECTION 4 SECTION 5

https://www.acquia.com/

18

Factory Hooks
As you develop your Acquia Cloud Site Factory websites, you
may have functions to perform during runtime, such as using
Drupal core’s Fast 404 capabilities when your website begins to
load. You may also want to perform actions after certain events,
such as deploying a theme or installing a website.

You can achieve these goals by triggering code execution
through Acquia Cloud Site Factory Hooks. Factory Hooks
simplify code deployments and trigger the execution of
custom code at multiple points during website installation,
deployment and runtime.

Acquia BLT for Drupal
Acquia BLT, available on GitHub, provides an automation
layer for testing, building and launching Drupal 8 applications.
BLT provides both a common suite of tools and standardized
structure to help developers reduce incidents of duplicated
work, speed up project configuration and onboard new
developers faster.

Using Acquia BLT for your Drupal projects will help you with
the following during your development cycles:

Provide a standard project template for
Drupal-based projects.

Provide tools automating the configuration and
maintenance work for projects.

Document and enforce Drupal standards and best
practices through default configuration, automated
testing and continuous integration.

INTRO SECTION 1 SECTION 2 SECTION 3 SECTION 4 SECTION 5

https://www.acquia.com/

19

Acquia Developer Studio
Acquia Developer Studio integrates many of the tools developers
need to build better digital experiences and be more productive.
With Acquia Developer Studio, you can focus on building the best
Drupal websites using the tools you already know.

Acquia Developer Studio provides a command-line interface (CLI)
that exposes Drupal development workflows that are tailored to
Drupal developers who work in modern, virtual environments. CLI
can be used in lieu of BLT to simplify some workflows.

Drupal development goals a user should be able to accomplish
using the Acquia Developer Studio CLI include:

• Creating a new Drupal project

• Deploying to a remote site

• Refreshing local files and deploy between remote sites

• (Optional) Cloning an existing Drupal project, if applicable

Acquia Developer Studio Remote IDE is a browser-based integrated
development environment (IDE), source code editor and Drupal
development stack running in Acquia Cloud. It provides a local
development environment in the cloud with all of your development
tools built in. Although Remote IDE requires Acquia Developer
Studio CLI to be previously installed, you can access Remote IDE
without installing any additional software on your computer.

INTRO SECTION 1 SECTION 2 SECTION 3 SECTION 4 SECTION 5

https://www.acquia.com/

SECTION 5
Bring Your Development
Workflow to the Next Level

21

In many situations in life, it may be wise to live in the moment,
not be overly concerned about the future and just see what
happens. Drupal development, however, is not one of them.

Having the right plan, the right tools and the ability to
detect and resolve problems as soon as possible will make
your development workflow significantly more efficient
and productive. You will also be leaps and bounds ahead
of your peers, as most organizations still operate with an
extemporaneous system that reactively fixes problems rather
than proactively prevents them.

We are very excited to help organizations maximize their
development workflows to create more products at a higher
quality. To see how Acquia can be your trusted partner in
bringing your development workflow to the next level,
contact us.

Bring Your Development
Workflow to the Next Level

INTRO SECTION 1 SECTION 2 SECTION 3 SECTION 4 SECTION 5

https://www.acquia.com/

Acquia is the open source digital experience company.
We provide the world’s most ambitious brands with
technology that allows them to embrace innovation
and create customer moments that matter. At Acquia,
we believe in the power of community — giving our
customers the freedom to build tomorrow on their terms.

ABOUT ACQUIA

acquia.com

http://www.acquia.com
https://www.facebook.com/acquia/
https://twitter.com/acquia?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://www.youtube.com/channel/UC--IusnuLuIGptCgCPss1Og
http://www.linkedin.com/acquia

